1. **Schwarzschild Geometry Basics, Part I.** Recall the three-dimensional spatial Schwarzschild metric \(g_S = \left(1 + \frac{m}{2|x|}\right)^4 g_{\mathbb{R}^3} \), defined on the manifold \(M \) given by \(M = \mathbb{R}^3 \setminus \{0\} \) for \(m > 0 \), \(M = \mathbb{R}^3 \) for \(m = 0 \), and \(M = \{x \in \mathbb{R}^3 : |x| > -\frac{m}{2}\} \) for \(m < 0 \).

 a. Find \(\text{Ric}(g_S) \), which does not vanish; you should observe that its trace \(R(g_S) \), the scalar curvature, does vanish.

 b. Show that
 \[
 m = \frac{1}{16\pi} \lim_{r \to +\infty} \int_{|x|=r} \sum_{i,j=1}^3 ((g_S)_{i,j,i} - (g_S)_{ii,j}) v_i^j d\sigma_e
 \]
 where the computation is done in the coordinates \((x^1, x^2, x^3)\), and where \(\nu_e \) is the Euclidean outward unit normal, and \(d\sigma_e \) is the Euclidean area measure (where \((x^i)\) are Cartesian coordinates for the Euclidean metric).

 c. When \(m < 0 \), \(A(r) \to 0 \) as \(r \to -(\frac{m}{2})^+ \). Show that a radial geodesic from \(r = r_0 > -\frac{m}{2} \) to \(r = -\frac{m}{2} \) has finite length. Can the Schwarzschild metric with \(m < 0 \) be smoothly completed by adding in a point?

 d. Let \(m > 0 \). Find an isometric embedding of \((M, g_S)\) into Euclidean space \((\mathbb{R}^4, g_{\mathbb{R}^4})\), identified in Cartesian coordinates \((x, y, z, w)\) with \((\mathbb{R}^4, dx^2 + dy^2 + dz^2 + dw^2)\). It might be easiest to use the other coordinates we introduced for the Schwarzschild metric: \((1 - \frac{2m}{r})^{-1}dr^2 + r^2 g_{\mathbb{R}^2}, r > 2m\). (This corresponds to “half” of \((M, g_S)\). The map you get will then extend by reflection to the other “half.”) For \(\omega \in \mathbb{S}^2 \), look for an embedding of the form \(x = r\omega \mapsto (r\omega, \xi(r)) \in \mathbb{R}^4 \). Use this to sketch a picture of the Schwarzschild spatial slice.

 e. When \(m < 0 \) the argument breaks in part e. down. Instead, look for an isometric embedding into Minkowski space \(\mathbb{M}^4 \), which is identified with \(\mathbb{R}^4 \) with the metric \(dx^2 + dy^2 + dz^2 - dw^2 \).

2. **Schwarzschild Geometry Basics, Part II.** Let \(\nabla \) be the connection on \((M, g_S)\), and for vector fields \(X \) and \(Y \) tangent to a surface \(\Sigma \subset M \), let \(\Pi(X, Y) = (\nabla_X Y)^{\text{Nor}} \), and let \(\mathbf{H} = \text{tr}_\Sigma(\Pi) \).

 a. For \(m > 0 \), show that \(r \mapsto \frac{2m}{r^2} \) induces an isometry of \(g_S \) which fixes \(\Sigma_0 = \{r = \frac{m}{2}\} \).

 b. For \(m > 0 \), show that \(\Sigma_0 \) is totally geodesic in \(M \). Express \(m \) in terms of the area of \(\Sigma_0 \).

 c. Find the area \(A(r) \) of \(S_r = \{x : |x| = r\} \) of \(S_r \) in the metric \(g_S \). For \(m > 0 \), show that \(A(r) \) has a global minimum at \(r = \frac{m}{2} \).

 d. Fix \(r \) and find the second fundamental form and the mean curvature vector \(\mathbf{H} \) of \(S_r = \{x : |x| = r\} \) in the metric \(g_S \).

 e. Compare \(A'(r) \) to \(\int_{S_r} \mathbf{H} \cdot \mathbf{X} \ d\sigma \), where \(\mathbf{X} = \frac{\partial}{\partial r} \), and \(d\sigma \) is the area measure induced by \(g_S \).
f. For $m > 0$, show that there are no closed minimal surfaces in (M, g_S) other than Σ_0, using an argument along the lines of the proof that there are no closed minimal surfaces in Euclidean space.

g. If ν_0 is a unit normal to a surface with mean curvature vector H, let $H = \langle H, \nu_0 \rangle g_S$. The Hawking mass of a surface Σ is given by

$$m_H(\Sigma) = \sqrt{A(\Sigma) \over 16\pi} \left(1 - {1 \over 16\pi} \int_\Sigma H^2 \, d\sigma_S \right).$$

Find $m_H(S_r)$.

3. SCHWARZSCHILD GEOMETRY BASICS, PART III. In Euclidean space, the spheres minimize surface area for a given enclosed volume V. In fact if a closed surface of area A encloses a volume V, the isoperimetric inequality in three dimensions is $V \leq A^{3/2} / 6\sqrt{\pi}$.

Let $m > 0$. Hubert Bray showed that the spheres $S_r = \{x : |x| = r\}$ in $(M, (1 + m/2)g_S)$ are isoperimetric in the homology class of Σ_0 (defined above). In other words, amongst all surfaces homologous to Σ_0 and enclosing a certain volume V with Σ_0, the one with smallest area is the sphere S_r of the correct r value to enclose volume V.

a. Show that the volume $V(r)$ enclosed by Σ_0 and S_r ($r \geq m/2$) and Σ has the expansion

$$V(r) = \frac{4\pi r^3}{3} \left(1 + \frac{9m}{2r} + O(mr^{-2})\right).$$

b. Conclude that the volume V enclosed by Σ_0 and the sphere S_r of area A has the expansion

$$V(A) = \frac{A^{3/2}}{6\sqrt{\pi}} \left(1 + \frac{(3\sqrt{\pi})m}{\sqrt{A}} + O(mA^{-1})\right).$$

4. LINEARIZATION OF THE SCALAR CURVATURE MAP. Let $R(g) = g^{ij}R_{ij}$ be the scalar curvature of a metric (not necessarily Riemannian). Consider a variation $g(\epsilon) = g + \epsilon h$ of g in the direction of a symmetric $(0, 2)$-tensor field h (more generally, note that all you will use is that $g(\epsilon)$ is a metric smooth in t, with $g(0) = g$ and $g'(0) = h$). Assume that for small $|\epsilon|$, $g(\epsilon)$ is a metric, as would be the case for h compactly supported. Define $L_g(h) := DR_g(h) = \frac{d}{d\epsilon} \bigg|_{\epsilon=0} R(g(\epsilon))$.

a. Derive the scalar curvature formula

$$R(g) = g^{ij}R_{ij} = g^{ij} \left(\Gamma^k_{ij,k} - \Gamma^k_{ik,j} + \Gamma^k_{kl} \Gamma^l_{ij} - \Gamma^k_{jl} \Gamma^l_{ik}\right).$$

b. Verify that the difference $S(X, Y) := \nabla_X Y - \nabla_X Y$ defines a vector-valued $(0, 2)$-tensor (i.e. a $(1, 2)$ tensor $\tilde{S}(\theta, X, Y) = \theta(S(X, Y))$). Thus $\Gamma^k_{ij} := \frac{d}{d\epsilon} \bigg|_{\epsilon=0} \Gamma^k_{ij}$ form the components $(\delta\Gamma)^k_{ij}$ of a $(1, 2)$-tensor $(\delta\Gamma)$. Argue that $\tilde{\Gamma}^k_{ij} = \frac{1}{2} g^{km}(h_{mj,i} + h_{im,j} - h_{ij,m})$, where the covariant derivative is
taken with respect to \(g(0) \). (Hint: use \(g(0) \)-normal coordinates at \(p \).)

c. Use the preceding part to aid in verifying the identities \(\frac{d}{dt} \bigg|_{t=0} R_{ij} = (\delta \Gamma)^k_{ij,k} - (\delta \Gamma)^k_{ik,j} \), and then

\[
L_g(h) = -\Delta_g(\text{tr}_g(h)) + \text{div}_g(\text{div}_g(h)) - \langle h, \text{Ric}(g) \rangle_g
\]

where the inner product of two \((0,2)\)-tensors \(S \) and \(T \) is given by \(\langle S, T \rangle = S_{ij} T_{k\ell} g^{ik} g^{j\ell} \), for example \(\text{tr}_g(S) = \langle g, S \rangle \).

d. Show that \(L_g^* N = (\Delta_g N + \text{Hess}_g N - N \text{Ric}(g)) \), by integrating \(\int_M N L_g(h) \ dv_g \) by parts (for \(h \) compactly supported away from the boundary of \(M \)).

e. Show directly (and in one line) that if \(h \) is symmetric with compact support, and if \(L_g h \geq 0 \), then \(L_g h = 0 \).

f. Show by elementary methods that there exists an infinite-dimensional space of symmetric TT tensors (trace-free, divergence-free) on \((\mathbb{R}^3, g_E)\) with compact support. Such tensors automatically satisfy \(L_g h = 0 \).

Problem 5. Static potentials, I. Suppose \((M, g)\) is Riemannian.

a. Suppose that \(L_g^* N = 0 \), and that \(\gamma \) is a unit-speed geodesic in \((M^n, g)\). Let \(h(t) = N(\gamma(t)) \). Prove that \(h(t) \) satisfies a second-order linear ODE. What does this say about the dimension of the kernel of \(L_g^* \)?

b. Suppose that \(L_g^* N = 0 \), but that \(N \) is not identically zero. Show that \(\Sigma = N^{-1}(0) \) is a regular hypersurface, which is totally geodesic (zero second fundamental form). Hint: If \(p \in \Sigma \) and \(dN_p = 0 \), what does part a. have to say about things?

c. Suppose that \((M^n, g)\) is a closed manifold with negative scalar curvature. Find the kernel of \(L_g^* \).

d. Consider the metric \(g = (n - 2)^{-1} g_{S^1} \oplus g_{S^{n-1}} \) on \(S^1 \times S^{n-1} \). Show that \(N(t, \omega) = \sin t \) solves \(L_g^* N = 0 \).

e. Does every Ricci-flat metric have a nontrivial element \(N \) in the kernel of \(L_g^* \)? What can you say in case a metric \((M, g)\) on a closed manifold with zero scalar curvature admits a nontrivial \(N \) with \(L_g^* N = 0 \)?

f. Let \(N : M \to \mathbb{R} \) be a smooth function. Define the Lorentzian metric \(\bar{g} = -N^2 dt^2 \oplus g \) on the space \(S = I \times \{ p \in M : N(p) \neq 0 \} \). Prove that for \(X, Y \) tangent to \(M \) at \(p \) with \(N(p) \neq 0 \), we have \(\text{Ric}(\bar{g})(X, Y) = \text{Ric}(g)(X, Y) - \frac{1}{N(p)} \text{Hess}_g N(p), \text{Ric}(\bar{g})(X, \frac{\partial}{\partial t}) = 0, \text{and } \text{Ric}(\bar{g})(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}) = N \Delta_g N \).

g. Conclude from part a. that a function \(N \) on \(M \) is a nontrivial element of the kernel of \(L_g^* \) if and only if the metric \(\bar{g} \) as above is an Einstein metric. (Note that in the preceding problem you said something about the set \(\{ p \in M : N(p) = 0 \} \) where the metric \(\bar{g} \) may have issues.)

5. Conformal changes of metric.
a. Suppose \((M^n, g)\) is a Riemannian metric and \(\hat{g} = e^{\varphi}g\). Show that
\[
R(\hat{g}) = e^{-\varphi} \left(R(g) - (n - 1)\Delta_g \varphi - \frac{1}{4}(n - 1)(n - 2)|\nabla \varphi|_g^2 \right).
\]
b. In case \(n \geq 3\), if we write \(e^{\varphi} = u^{\frac{4}{n-2}}\) for \(u > 0\), then
\[
R(\hat{g}) = u^{-\frac{n+2}{n-2}} \left(R(g)u - \frac{4(n-1)}{(n-2)} \Delta_g u \right).
\]
c. Suppose \(M\) is compact with empty boundary. Let \(c(n) = \frac{n-2}{4(n-1)}\). Let \(L_g u = \Delta_g u - c(n)R(g)u\), the conformal Laplacian. Show that the total scalar curvature of \(\hat{g} = u^{\frac{4}{n-2}}g\) is given by
\[
\int_M R(\hat{g}) \, dv_{\hat{g}} = c(n)^{-1} \int_M (|\nabla u|_{\hat{g}}^2 + c(n)R(g)u^2) \, dv_g.
\]
HINT: Show that \(dv_{\hat{g}} = u^{\frac{2n}{n-2}} \, dv_g\).

6. SOME ASYMPTOTIC EXPANSIONS. Suppose \((\mathbb{R}^3 \setminus B_{r_0}(0), g)\) is harmonically flat: \(g = u^4 g_E\), \(R(g) = 0\), i.e. \(\Delta_g u = 0\), with \(u(x) \to 1\) as \(|x| \to +\infty\). We saw the expansion \(u(x) = 1 + \frac{A}{|x|} + \frac{\beta_i x^i}{|x|^2} + O(|x|^{-3})\) via spherical harmonics.

a. Let \(x = y + c\), for \(c \in \mathbb{R}^3\). For \(|y + c| > r_0\), find the asymptotic expansion of \(u\) as a function of \(y\). Show for \(A \neq 0\) that there is a unique choice of \(c \in \mathbb{R}^3\) for which \(\tilde{u}(y) := u(y+c) = 1 + \frac{A}{|y|} + O(|y|^{-3})\).

b. Compute \(\lim_{r \to +\infty} \int_{|x| = r} x^k \sum_{i,j=1}^{3} (g_{ij,i} - g_{ii,j}) \nu^i \, d\sigma_e\) where \(\nu^i = \frac{x^i}{r}\). (Warning: this gives the center of mass, but the flux integral isn’t the right form for more general asymptotically flat metrics.)

7. CONSTRAINTS MAP IN HARMONIC ASYMPTOTICS. Define the operator \((\tilde{\mathcal{L}}_g(X))_{ij} = X_{ij}^k + X_{j,i}^k - X_{ik}^j g_{ij}\). If \(\gamma\) is a metric on \(M^3\), let \(g = u^4 \gamma\) and \(\pi_{ij} = u^2 (\mathcal{L}_\gamma(X))_{ij}\) for \(u > 0\).

a. Compute the constraints map \(\Phi(g, \pi) = (R(g) - |\pi|^2_\gamma + \frac{1}{2} (\text{tr} \pi)^2, \text{div} \pi, \text{tr} \pi)\), and in case \(\gamma = g_E\), show that the vacuum constraints \(\Phi(g, \pi) = 0\) can be written, in a Cartesian coordinate system for the background \(g_E\), as follows (subscripts for the flat metric omitted):
\[
8\Delta u = u \left(-|\tilde{\mathcal{L}} X|^2 + \frac{1}{2} (\text{tr} (\tilde{\mathcal{L}} X))^2 \right)
\]
\[
\Delta X^i + 4u^{-1} u_{,i} (\tilde{\mathcal{L}} X)_i^j - 2u^{-1} u_{,i} \text{tr} (\tilde{\mathcal{L}} X) = 0
\]
b. If the above equations in part a. hold on an asymptotic end of an AF manifold \((M, g)\), one can show that \(u\) and \(X\) have partial expansions \(u(x) = 1 + \frac{A}{|x|} + O(|x|^{-2})\), \(X^i(x) = \frac{B^i}{|x|} + O(|x|^{-2})\), along with fall off for derivatives. Show that \(\pi_{ij} = -\frac{B^i x_j + B^j x_i}{|x|^3} + \sum_k \frac{B^k x^j x^i}{|x|^3} \delta_{ij} + O(|x|^{-3})\), and that \(P^i = -\frac{B^i}{2}\) is the ADM linear momentum.

8. Assume that \(h\) is a (smooth) transverse-traceless tensor at the Euclidean metric on \(\mathbb{R}^3\). Let’s use Cartesian coordinates \(x\), so that covariant derivative components are computed via partial derivatives (the Christoffel symbols vanish). So \(0 = \text{tr} g_E h = \sum_{i=1}^3 h_{ii},\) and \(0 = (\text{div} g_E h)_j = \sum_{i=1}^3 h_{ij,j}.\) Now,
assume that h has compact support. Let $\gamma_\epsilon = g_{\mathbb{R}^n} + \epsilon h$, and for $|\epsilon|$ sufficiently small, let $u_\epsilon > 0$ be the associated conformal factor so that with $g_\epsilon = u_\epsilon^4 \gamma_\epsilon$, $R(g_\epsilon) = 0$, and u_ϵ tends to 1 at infinity. Near infinity each u_ϵ is harmonic, and as such has an asymptotic expansion $u_\epsilon = 1 + \frac{m(\epsilon)}{|x|^2} + O(|x|^{-2})$.

a. Show that $16\pi m(\epsilon) = -\int_{\mathbb{R}^3} R(\gamma_\epsilon) u_\epsilon \, dv_{g_\epsilon}$.

b. Show that $m'(0) = 0$ and that $16\pi m''(0) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla_{g_\epsilon} h|^2 \, dv_{g_\epsilon}$.

9. Rigidity computations for PET. Suppose (M, g) is asymptotically flat with one end, with $R(g) \geq 0$, $R(g) \in L^1(M)$, and with ADM mass $m = 0$.

a. One can show that there is a conformal factor $u > 0$, $u \to 1$ near infinity, with $u(x) = 1 + \frac{A}{|x|^{n-2}} + O(|x|^{-n+1})$, so that $R(u^{\frac{4}{n-2}} g) = 0$. Argue that $A \leq 0$, and that the mass of $u^{\frac{4}{n-2}} g$ is $m + 2A \leq m$. Show that if $R(g)$ does not vanish identically, then $A < 0$.

b. Suppose $m = 0$. By part a., we have $R(g) = 0$. We want to show the Ricci curvature vanishes. Let $0 \leq \zeta_\theta \leq 1$ be a compactly-supported bump function which is identically 1 on the compact core of M, out to $|x| \leq \theta$, and $\zeta_\theta = 0$ outside $|x| \geq 2\theta$ (or $|x| \geq \theta + 1$, say). Let $h_\theta = \zeta_\theta \text{Ric}(g)$. Let $\gamma_\epsilon = g + \epsilon h_\theta$. Let $u_\epsilon > 0$ be so that $R(u_\epsilon^{\frac{4}{n-2}} \gamma_\epsilon) = 0$, with $u_\epsilon \to 1$ at infinity. (Such a function exists for small ϵ, because $\Delta_g - \frac{n-2}{4(n-1)} R(\gamma_\epsilon)$ is a small perturbation of Δ_g, which is invertible in suitable weighted function spaces.) Let $g_\epsilon = u_\epsilon^{\frac{4}{n-2}} \gamma_\epsilon$, and let $m(\epsilon)$ be the ADM mass of g_ϵ. Use the idea of #8a., and argue that $m'(0) = 0$. Then compute $m'(0)$ using the linearization of scalar curvature operator (#4c.) $DR_g(h) = -\Delta_g (\text{tr}_g h) + \text{div}_g \text{div}_g h - (h, \text{Ric}(g))_g$.

c. From part b., we have an complete manifold (M, g) with vanishing Ricci curvature, which is also asymptotically flat. Use the Bishop-Gromov volume comparison to argue that (M, g) must be isometric to $(\mathbb{R}^n, g_{\mathbb{R}^n})$.

10. This problem refers to Proposition 3.2 in the Corvino-Pollack article. The proof as written has a gap. It was first written for $R(g) = 0$ or small, but the point of the way it is stated is to allow more general $R(g) \geq 0$. Locate the error. Then fix it! To do so, note that what is small is $R(g_\theta) - \psi_\theta R(g)$ for large θ. Modify the desired scalar curvature of $R(u^4 g_\theta)$ to make the resulting PDE to solve for u to be much nicer, and then complete the proof.

APPENDIX: Problems on Euclidean Harmonic Functions.

1. a. Verify that the following distributional equations hold: $\Delta(\frac{1}{2\pi} \log |x|) = \delta_0$ in dimension $n = 2$, while $\Delta(\frac{1}{(2-n)n\omega_n} |x|^{2-n}) = \delta_0$ in dimensions $n > 2$. Here δ_0 is the Dirac delta distribution at the origin.

b. Suppose $f \in C^2_c(\mathbb{R}^n)$, $n > 2$. Suppose $\text{spt}(f) \subset \{x : |x| \leq K\}$. Then if we let $u(x) = \frac{1}{(2-n)n\omega_n} \int_{\mathbb{R}^n} |x - y|^{2-n} f(y) \, dy$, then $\Delta u = f$ by the above. Moreover, show that u has an expansion of the form $u(x) = \frac{A}{|x|^{n-2}} + \frac{B_i x_i}{|x|^n} + O(|x|^{-n})$. Express the constants A and B_i in terms of integrals involving f.

2. a. Show that if \(u \) is harmonic with an isolated singularity at \(x = 0 \), then the singularity is in fact removable if \(\lim_{x \to 0} |x|^{n-2} u(x) = 0 \) in case \(n > 2 \), and in case \(n = 2 \), if \(\lim_{x \to 0} \frac{u(x)}{\log |x|} = 0 \).

b. If \(K[u] \) is the Kelvin transform of \(u \), find \(\Delta(K[u]) \) in terms of \(\Delta u \). Conclude that \(K[u] \) is harmonic if and only if \(u \) is harmonic. Recall \(K[u](x) = |x|^{2-n} u(x^*) \), \(x^* = |x|^{-2} x \).

c. Prove that if \(n > 2 \) and \(u \) is harmonic near infinity. Prove that \(u \) is harmonic at infinity if and only if \(\lim_{|x| \to +\infty} u(x) = 0 \).

3. If \(v \) is harmonic at infinity and \(n > 2 \), \(v \) admits an expansion at infinity in terms of spherical harmonics. We derived the first two terms which give \(v(x) = \frac{a_0}{|x|^{n-2}} + \frac{a_i x^i}{|x|^{n}} + O(|x|^n) \). Derive the next order term, in case \(n = 3 \).

4. Let \((S^n, g_0) \) be the standard unit round sphere, \(S^n \) embedded in \(\mathbb{R}^{n+1} \) as \(\{|x| = 1\} \). It is a fact that the lowest positive eigenvalue \(\lambda_1 \) for \(\Delta g_0 \) corresponds to the eigenfunctions \(x^i \) (Euclidean coordinates) restricted to the sphere. Compute \(\lambda_1 = n \) by using \(\Delta g_0(x^i) = -\lambda_1 x^i \). Multiply by \(x^i \), integrate by parts, and use the fact that \(\nabla g_0 x^i \) is the tangential component of \(\nabla x^i = e_i = \frac{\partial}{\partial x^i} \).

5. Recall Bôcher’s Theorem: if \(u > 0 \) is harmonic in a punctured ball \(B \setminus \{0\} \), there exist \(v \) harmonic in \(B \) and \(b \geq 0 \) so that \(u(x) = \begin{cases} b \log \left(\frac{1}{|x|} \right) + v(x), & n = 2 \\ b|x|^{2-n} + v(x), & n > 2. \end{cases} \)

a. Show that \(b \) and \(v \) are uniquely determined.

b. \(\Omega \subset \mathbb{R}^n \) is an open set, \(n > 2 \). If \(u \) is harmonic in \(\Omega \setminus \{a\} \) \((a \in \Omega) \), so that \(u > 0 \) in a deleted neighborhood of \(a \), show there is a number \(b \geq 0 \) and a function \(v \) harmonic on all of \(\Omega \) so that on \(\Omega \setminus \{a\}, u(x) = b|x-a|^{2-n} + v(x) \).

c. \(n > 2 \). If \(u \) is harmonic on \(B \setminus \{0\} \), and \(\lim \inf_{x \to 0} |x|^{n-2} u(x) > -\infty \), there exists \(v \) harmonic in \(B \), \(b \in \mathbb{R} \) so that \(u(x) = b|x|^{2-n} + v(x) \) on \(B \setminus \{0\} \).

d. What can you say about a positive harmonic function on \(\mathbb{R}^n \setminus \{0, a\}, a \neq 0 \)?