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Mean curvature flow (MCF)

» Let X2 be a smooth submanifold in a Riemannian manifold V. If

there is a family of smooth immersions X; : > — NN satisfying

(PEED) — x, o)

Xo = 1d

then >2; is called a MCF of X..

- H = g9(Y g 2X)1, where gy = (2, 2X )

» A nonlinear weakly parabolic quasi-linear system, when coupling with
a diffeomorphism of >, the flow can be made into a normal

deformation.

Yng-Ing Lee Soliton Solutions for Mean Curvature Flow
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» Short time existence for any smooth compact initial data.

w:Z«.Q Lf)b

» Singularities may occur at larger time. The flow forms singularities

when the second fundamental form of the submanifold blows up.

» Use parabolic blow up to understand the profile of isolated
singularity.

» Assume N = R™ now for simplicity. A parabolic dilation of scale
A > 0 at (xg,tp) is defined to be

Dy : (z,t) = (Max — z0), N2 (t — tp)).

> Denote s = \*(t — o) and X3 = Dx(%4,+ ). Then X2 also
satisfies MCF and t € [0,t9) = s € (—)\2150,0} .
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~ Let {M}'},{M¢},t € [a,b] be two family of compact embedded hypersurfaces evolu-
ing by the mean curvature flow. Suppose M! N M? = ¢. Then

% dist(M}!, M?) >0

at points of differentiability. In particular, their distance is increasing.
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Theorem A. Let (X, g) and (X5, h) be Riemannian manifolds of constant Q/\/ 5
curvature k; and k, respectively and f be a smooth map from %, to . a”‘é oL )

Suppose ki > |ka|. If det(g;; + (f"h)ij) < 2, the mean curvature flow of the
graph of f remains a graph and exists for all time. T (e AZy < 2

The mean curvature flow for graphs appears to favor positively curved
domain manifold. The convergence theorem 1s the following.

Theorem B. Letr (X, g) and (2,, h) be Riemannian manifolds of constant
curvature k; and ky respectively and | be a smooth map from 2, to ».
Suppose ky > |ka| and ki +ky > 0. If det(g;; + (f*h);j) < 2, then the mean
curvature flow of the graph of f converges to the graph of a constant map

at infinity.
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THEOREM 1.1 Let 21 and %, be compact Riemannian manifolds of constant cur-

vature k| and k,, respectively. Suppose k| > |ks|, k1 + ko > 0, and dim(X;) > 2. \" < I
If f is a smooth, area-decreasing map from %, to X, the mean curvature flow of Ac J

the graph of f remains the graph of an area-decreasing map, exists for all time,

and converges smoothly to the graph of a constant map.

COROLLARY 1.2 Any area-decreasing map from S" to S" with n > 2 is homotopi-
cally trivial.

(L——LQ—Q/Q‘D/,)

Theorem 1. Let (Ny,g) and (N3, h) be two compact Riemannian manifolds, and
let f be a smooth map from Ny to No. Assume that Ky, > k1 and Ky, < ko for
two constants k1 and ko, where Kn, and Ky, are the sectional curvature of N1 and
N>, respectively. Suppose either ki > 0,ky <0, or ky > ko > 0. Then the following
results hold:

(i) If det((g+f"h)ij)

det(gi;)
the graph of a map and exists for all time.

(ii) Furthermore, if ki > 0, then the mean curvature flow converges smoothly
to the graph of a constant map.

< 4, then the mean curvature flow of the graph of f remains



Theorem 2. Assume the same conditions as in Theorem 1. Then the following
results hold:

(i) If f is a smooth area-decreasing map from Ny to Ns, then the mean cur-

vature flow of the graph of f remains the graph of an area-decreasing map
and exists for all time.

(i) Furthermore, if ky > 0, then the mean curvature flow converges smoothly

to the graph of a constant map.

(8avae- Hald],aj cad Swmrczyr, Dol ¥)

Theorem A. Let M and N be two compact Riemannian manifolds. Assume that m =
dim M > 2 and that there exists a positive constant o such that the sectional curvatures
secypy of M and secy of N and the Ricci curvature Ricys of M satisfy

secpy > —o0, Ricyr =2 (m—1)oc > (m — 1) secy .

If f: M — N is a strictly area decreasing smooth map, then the mean curvature flow
of the graph of f remains the graph of a strictly area decreasing map and exists for all

time. Moreover, under the mean curvature flow the area decreasing map converges to a
constant map.



Theorem 4.1 Let X' and X? be two compact closed Riemann surfaces with
metrics of the same constant curvature c. Let wy and wy be the volume forms of
Y1 and Y2, respectively. Consider a map f : X' — X? that satisfies f*wy = wy,
i.e. [ 18 an area-preserving map or a symplectomorphism. Denote by X; the
mean curvature flow of the graph of f in M = X! x ¥2. We have

1. X exists smoothly for all t > 0 and converges smoothly to Yo ast — oo.

2. Each ¥; is the graph of a symplectomorphism f; : ¥1 — X2 and f; con-
verges smoothly to a symplectomorphism fo : X' — 3?2 as t — 00.

Moreover, min ‘;8&5;

an isometry if ¢ >0
T 1S a linear map o 6= 1)
a harmonic diffeormophism if ¢ <0

Since any diffeomorphism is isotopic to an area preserving diffeomorphism,
this gives a new proof of Smale’s theorem [29] that O(3) is the deformation
retract of the diffeomorphism group of S*. For a positive genus Riemann surface,
this implies the identity component of the diffeomorphism group is contractible.
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Theorem 4 [2/] There exists an explicitly computable constant A > 1 depend-
ing only on n, such that any symplectomorphism f : CP" — CP"™ with

1
—i . T 2 A
Ag_fg_ g

1s symplectically 1sotopic to a biholomorphic isometry of CP™ through the mean
curvature flow.

A theorem of Gromov [15] shows that, when n = 2, the statement holds true
without any pinching condition by the method of pseudoholomorphic curves.
Our theorem is not strong enough to give an analytic proof of Gromov’s theorem
for n = 2. However, for n > 3, this seems to be the first known result.

§mo62/£ "‘W"”j | 2oL

Theorem A. LetY be a Lagrangian submanifold in T*". Suppose ¥
i1s the graph of f : T" — T" and the potential function u of f is convez.
Then the mean curvature flow of X exists for all time and converges
smoothly to a flat Lagrangian submanifold.

eno ikt S’g. —F'V Rocal FM\@J\%

du 1 ndet(1+¢le2u) . A Y = Sk
dt \/jl Vdet(I + (D%u)?) ‘y all:u u"J k
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Consider the fully nonlinear parabolic equation for a function u : R” x [0, T) — R

a . i
{ 8_Ltt = > jarctand; = (Q %M -A(t— &}%W 71:'7/’/
| u(x, 0) = up(x) Neza Y.
Theorem 1.1 Suppose that ug : R" — R is a function with L°° Hessian satisfying o }&u.ud édw-
— (1 = 8)I, < essinf D?ug < ess sup D?*ug < (1 =8I, (1.3) 03' ﬁﬂ’&"g”%“‘l

cade
forany é € (0, 1). Then (1.1) has a longtime smooth solution u(x, t) for allt > 0 with initial 4’
condition uq such that the following estimates hold.: E ﬁ@,, - sté&m

1. —(1 =81, <D*u<(1—=28I,forallt > 0.
2. SUP, g |D'u(x,t)|? < C15/t' =2 for all | > 3, and some C; 5 depending only on 1, 8.

3. u and Du are Holder continuous in time at t = 0 with Holder exponents 1 and 1/2

respectively.

If in addition |Duy(x)| — 0 as |x| — oo, then sup, pn |Du(x,t)| — 0 ast — oo. In
particular, the graph (x, Du(x, t)) immediately becomes smooth and converges smoothly on

compact sets to the coordinate plane (x, 0) in R*".

& U 372,')’70%/ Con EX aj/@v cfzam;v'j Condinalee



Theorem 1.2 Suppose that ug : R" — R is a function with L°° Hessian satisfying (1.3) and IH| towdrsd. | A /
suppose that 5

lim A" 2ug(rx) = Up(x) (1.4)

A—>00 Bewn Sl Thp

forsome Uy (x). Letu(x, t) be the solutionto (1.1) withinitial datauo(x). Then A 2u(x, A%t
converges to a smooth self-expanding solution U (x, t) to (1.1) uniformly on compact subsets
of R" x (0,00) as A — o0, and U(x,t) converges to Uy(x) uniformly on compact subsets
of R" ast — 0. In particular, there is a one-to-one correspondence between self-expanding

solutions to (1.1) satisfying (1.3) and Lipschitz functions on R" which are homogeneous of
degree 2 and satisfy (1.3).

C/Q\GLAA — C/{"Q,‘A _Ytka./v\ 2 20[3

Theorem 1.1 There exists a small positive dimensional constant n = n(n) such that
ifug : R" — Risa CY! function satisfying

aﬁmm)t Cmf&d
— (141, < D*up < (1 + )1, (2)
“f?v‘feﬂt mk

then (1) has a unique longtime smooth solution u(x,t) for all t > 0 with initial
condition uq such that the following estimates hold:

(i) —~/31, < D*u < /31, forallt > 0.
(1) Sup, cgn IDlu(x, t)l2 = Cl/z‘l_2 foralll > 3, t > 0 and some C; depending
only on [.

(iti) Du(x, t) is uniformly Holder continuous in time at t = 0 with Holder exponent
1/2.
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Monotonicity Formula (Huisken, 1990)

» Back heat kernel at (xg, to)

1 —|z—=zg]?
Pzg,to (CC,t) — n € Hto—t) 9 t < tO’

VA (tg — t)

> |f X, satisfies MCF, then (X=X )"L

d @ @
pxo,tod,ut — _/ pxo,to‘H I |2d,U/t S 07
dat Js, 2 2(

to —t)

= limy_y, th Dao.todpie exists, called the density at (zq, o).

» Have a similar formula for MCF in a Riemannian manifold and the
density is also defined (White, 1997).

Yng-Ing Lee Soliton Solutions for Mean Curvature Flow
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= fEt Pzo.toAibe IS invariant under dilation. That is,

/ prvtOth — / IOO’Od,LL?.
N $A

» Choose \; — oo. If the limit of the flow of Zg‘i exists, it must satisfy

1
H(x,s)—Q—SXtL:O, s < 0.

» For MCF in a Riemannian manifold, the blow up limit still lies in R™.

> > is called a (normalized) self-shrinker in R™ if its position vector
X : ¥ — R™ satisfies H = —2X+. = /1 — tX satisfies MCF.

Yng-Ing Lee Soliton Solutions for Mean Curvature Flow
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Soliton Solution to MCF in R™

Solutions looks the same under MCF, either of the form (t) X (z) or
X (x) + 9(t) Direct computation shows that

> In case (1), H = ¢X~* and ¢(t) = /1 + 2ct for a constant c. ¢ < 0,
solutions shrink, self-shrinkers, models for central blowup limits.
¢ = 0, solutions do not move, minimal submanifolds. ¢ > 0,

solutions expand, called self-expanders, possible limit at infinity.

> In case (2), H = T+ for a constant vector T' and 1(t) = tT, called

a translating solution. It is possible limit for max point blowup.

» Find such examples. Try to classify. Determine whether these
examples are blowup limits of MCF. Use these examples to

understand the singularities, and do surgery.

Yng-Ing Lee Soliton Solutions for Mean Curvature Flow
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Theorem 3.1 (White’s Regularity Theorem). There are eg = g¢(n, k), C' =
C'(n, k) so that if OMy N By = 0 and My Sehsliee MCT

Oi(x,1) <1+ey forall | <R?xc Bag, andt < R*,
then the C*“-norm of My in Bg is bounded by C'/\/t for all t < R>.
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