Lecture II

An introduction to (Lagrangian) mean curvature flow with high codimension

UConn Summer School

Yng-Ing Lee

National Taiwan Univ.
Mean curvature flow (MCF)

- Let Σ^n be a smooth submanifold in a Riemannian manifold N. If there is a family of smooth immersions $X_t : \Sigma^n \to N$ satisfying

$$\left\{ \begin{align*}
(\frac{\partial X_t(x)}{\partial t})^\perp &= H(X_t(x)) \\
X_0 &= Id
\end{align*} \right.$$

then Σ_t is called a MCF of Σ.

- $H = g^{ij}(\nabla \frac{\partial X}{\partial x_i} \frac{\partial X}{\partial x_j})^\perp$, where $g_{ij} = \langle \frac{\partial X}{\partial x_i}, \frac{\partial X}{\partial x_j} \rangle$.

- A nonlinear weakly parabolic quasi-linear system, when coupling with a diffeomorphism of Σ, the flow can be made into a normal deformation.
\[\frac{dA_t}{dt} \bigg|_{t=0} = -\int_{\Sigma} \langle H, V \rangle \, d\Sigma \]

MC\, \bar{H} \, decrease \, the \, area \, most \, rapidly

\[(\frac{\partial X_t}{\partial t})^+ = H \Rightarrow \text{stationary pte are minimal} \]

- Also along the flow, geometry improves
 - ex: isoperimetric ratio

- Embedded closed plane curves shrink to round pts (Gage-Hamilton-Grayson)

- Embedded convex closed hyper surface in \(\mathbb{R}^n \) shrink to round points (Huisken)
- **Short time existence** for any smooth compact initial data.
- Singularities may occur at larger time. The flow forms singularities when the second fundamental form of the submanifold blows up.
- Use parabolic blow up to understand the profile of isolated singularity.
- Assume $N = \mathbb{R}^m$ now for simplicity. A parabolic dilation of scale $\lambda > 0$ at (x_0, t_0) is defined to be

$$D_\lambda : (x, t) \mapsto (\lambda(x - x_0), \lambda^2(t - t_0)).$$

- Denote $s = \lambda^2(t - t_0)$ and $\Sigma^s_\lambda = D_\lambda(\Sigma_{t_0} + \frac{s}{\lambda^2})$. Then Σ^s_λ also satisfies MCF and $t \in [0, t_0) \Rightarrow s \in \left(-\lambda^2t_0, 0\right].$
Avoid principle

Let \(\{M^1_t\}, \{M^2_t\}, t \in [a,b] \) be two family of compact embedded hypersurfaces evolving by the mean curvature flow. Suppose \(M^1_a \cap M^2_a = \emptyset \). Then

\[
\frac{d}{dt} \text{dist}(M^1_t, M^2_t) \geq 0
\]

at points of differentiability. In particular, their distance is increasing.

(Idea): Choose \(x_1, x_2 \) realizing distance. Compute \(\frac{d}{dt} \text{dist}(x_1, x_2) \).

If < 0, lead to contradiction.

- For sphere of radius \(r_0 \) in \(\mathbb{R}^{n+1} \), under MCF, solv is sphere of radius \(\sqrt{r_0^2 - 2nt} \)

\[
H = -\frac{n}{\gamma(t)} r_0 \quad F_0 = \text{unit sphere}
\]

- Dumb bell \(\Rightarrow \) Grayson's result not hold for \(n \geq 2 \)

 Avoid principle is not true for higher codim MCF.
Note: MCF of any closed submanifold in \mathbb{R}^n must develop finite time singularity: \[
\frac{d}{dt} |x|^2 = \Delta_t |x|^2 - 2n \Rightarrow \frac{d}{dt} (|x|^2 + 2nt) = \Delta_t (|x|^2 + 2nt)
\]

If $|x_0|^2 \leq R_0^2$, max principle $\Rightarrow |x(t)|^2 + 2nt \leq R_0^2$

Huisken used normalized eq. to analyze the case (hypersurface).

In general manifold, the situation could be different.

Difficulties for MCF in high codim

1. The flow is a non-linear system, cannot reduce to one scalar equation as in codim 1
 (Codim 1, good maximum principle was avoid principle)
② 2nd. fundamental form. symmetric two tensors valued in non-trivial normal bundle
no natural convex condition
What still continue to hold?
① Brakke’s regularity Thm
② Hamilton’s maximum principle for tensors
③ Huisken’s monotonicity formula
④ White’s regularity Thm
To study the flow, one need to look into the evolution eqn of H. If $1A^2$,

In higher codimension, it is much more complicated.

For a map $f_0: M_1 \rightarrow M_2$, Wang studied MCF of its graph $\Sigma f_0 \subset (M_1, C_1) \times (M_2, C_2)$. Using singular decomposition of the differential (Liouville eigenvalues of $\sqrt{(df)^T df}$) and suitable basis, the evolution eq can be simplified. Evolution eq of $x\Omega = \frac{1}{\sqrt{1 + x^2}}$ is particularly important. (A generalization of $\frac{1}{\sqrt{1 + x^2}}$ for hypersurface $M_2 = R$)
Various curvature conditions on Σ_1, M_2, and singular value restriction on g_0, h, and with his collaborators can prove:

1. flow remains graph
2. the flow exists smoothly for all time \((\text{White's Thm}) \)
3. f_t converges to a constant map as t tends to ∞

Theorem A. Let (Σ_1, g) and (Σ_2, h) be Riemannian manifolds of constant curvature k_1 and k_2 respectively and f be a smooth map from Σ_1 to Σ_2. Suppose $k_1 \geq |k_2|$. If $\det(g_{ij} + (f^*h)_{ij}) < 2$, the mean curvature flow of the graph of f remains a graph and exists for all time.

\[\prod (1 + \lambda^*_i) < 2 \] (Wang 2002)

The mean curvature flow for graphs appears to favor positively curved domain manifold. The convergence theorem is the following.

Theorem B. Let (Σ_1, g) and (Σ_2, h) be Riemannian manifolds of constant curvature k_1 and k_2 respectively and f be a smooth map from Σ_1 to Σ_2. Suppose $k_1 \geq |k_2|$ and $k_1 + k_2 > 0$. If $\det(g_{ij} + (f^*h)_{ij}) < 2$, then the mean curvature flow of the graph of f converges to the graph of a constant map at infinity.
THEOREM 1.1 Let Σ_1 and Σ_2 be compact Riemannian manifolds of constant curvature k_1 and k_2, respectively. Suppose $k_1 \geq |k_2|$, $k_1 + k_2 > 0$, and $\dim(\Sigma_1) \geq 2$. If f is a smooth, area-decreasing map from Σ_1 to Σ_2, the mean curvature flow of the graph of f remains the graph of an area-decreasing map, exists for all time, and converges smoothly to the graph of a constant map.

COROLLARY 1.2 Any area-decreasing map from S^n to S^m with $n \geq 2$ is homotopically trivial.

(Lee, 2011)

Theorem 1. Let (N_1, g) and (N_2, h) be two compact Riemannian manifolds, and let f be a smooth map from N_1 to N_2. Assume that $K_{N_1} \geq k_1$ and $K_{N_2} \leq k_2$ for two constants k_1 and k_2, where K_{N_1} and K_{N_2} are the sectional curvature of N_1 and N_2, respectively. Suppose either $k_1 \geq 0, k_2 \leq 0$, or $k_1 \geq k_2 > 0$. Then the following results hold:

(i) If \(\frac{\det((g+f^*h)_{ij})}{\det(g_{ij})} < 4 \), then the mean curvature flow of the graph of f remains the graph of a map and exists for all time.
(ii) Furthermore, if $k_1 > 0$, then the mean curvature flow converges smoothly to the graph of a constant map.
Theorem 2. Assume the same conditions as in Theorem \[1\]. Then the following results hold:

(i) If \(f \) is a smooth area-decreasing map from \(N_1 \) to \(N_2 \), then the mean curvature flow of the graph of \(f \) remains the graph of an area-decreasing map and exists for all time.

(ii) Furthermore, if \(k_1 > 0 \), then the mean curvature flow converges smoothly to the graph of a constant map.

(Savare-Hajilouj and Smoczyk, 2014)

Theorem A. Let \(M \) and \(N \) be two compact Riemannian manifolds. Assume that \(m = \dim M \geq 2 \) and that there exists a positive constant \(\sigma \) such that the sectional curvatures \(\sec_M \) of \(M \) and \(\sec_N \) of \(N \) and the Ricci curvature \(\text{Ric}_M \) of \(M \) satisfy

\[
\sec_M > -\sigma, \quad \text{Ric}_M \geq (m-1)\sigma \geq (m-1)\sec_N.
\]

If \(f : M \to N \) is a strictly area decreasing smooth map, then the mean curvature flow of the graph of \(f \) remains the graph of a strictly area decreasing map and exists for all time. Moreover, under the mean curvature flow the area decreasing map converges to a constant map.
Theorem 4.1 Let Σ^1 and Σ^2 be two compact closed Riemann surfaces with metrics of the same constant curvature c. Let ω_1 and ω_2 be the volume forms of Σ^1 and Σ^2, respectively. Consider a map $f : \Sigma^1 \to \Sigma^2$ that satisfies $f^*\omega_2 = \omega_1$, i.e. f is an area-preserving map or a symplectomorphism. Denote by Σ_t the mean curvature flow of the graph of f in $M = \Sigma^1 \times \Sigma^2$. We have

1. Σ_t exists smoothly for all $t > 0$ and converges smoothly to Σ_∞ as $t \to \infty$.

2. Each Σ_t is the graph of a symplectomorphism $f_t : \Sigma^1 \to \Sigma^2$ and f_t converges smoothly to a symplectomorphism $f_\infty : \Sigma^1 \to \Sigma^2$ as $t \to \infty$.

Moreover,

$$f_\infty \text{ is } \begin{cases}
\text{an isometry} & \text{if } c > 0 \\
\text{a linear map} & \text{if } c = 0 \\
\text{a harmonic diffeormorphism} & \text{if } c < 0
\end{cases}$$

Since any diffeomorphism is isotopic to an area preserving diffeomorphism, this gives a new proof of Smale’s theorem [29] that $O(3)$ is the deformation retract of the diffeomorphism group of S^2. For a positive genus Riemann surface, this implies the identity component of the diffeomorphism group is contractible.
Theorem 4 [24] There exists an explicitly computable constant $\Lambda > 1$ depending only on n, such that any symplectomorphism $f: \mathbb{C}P^n \to \mathbb{C}P^n$ with

$$\frac{1}{\Lambda} g \leq f^* g \leq \Lambda g$$

is symplectically isotopic to a biholomorphic isometry of $\mathbb{C}P^n$ through the mean curvature flow.

A theorem of Gromov [15] shows that, when $n = 2$, the statement holds true without any pinching condition by the method of pseudoholomorphic curves. Our theorem is not strong enough to give an analytic proof of Gromov’s theorem for $n = 2$. However, for $n \geq 3$, this seems to be the first known result.

Theorem A. Let Σ be a Lagrangian submanifold in T^{2n}. Suppose Σ is the graph of $f: T^n \to T^n$ and the potential function u of f is convex. Then the mean curvature flow of Σ exists for all time and converges smoothly to a flat Lagrangian submanifold.

$$\frac{du}{dt} = \frac{1}{\sqrt{-1}} \ln \frac{\det(I + \sqrt{-1} D^2 u)}{\sqrt{\det(I + (D^2 u)^2)}}.$$ from $\frac{d}{dt} U_i = g^{sk} U_{ijk}$
Consider the fully nonlinear parabolic equation for a function $u : \mathbb{R}^n \times [0, T) \to \mathbb{R}$

\[
\begin{cases}
\frac{\partial u}{\partial t} = \sum_{i=1}^{n} \arctan \lambda_i = 0 \\
u(x, 0) = u_0(x)
\end{cases}
\]

Theorem 1.1 Suppose that $u_0 : \mathbb{R}^n \to \mathbb{R}$ is a function with L^∞ Hessian satisfying

\[-(1 - \delta)I_n \leq \text{ess inf } D^2u_0 \leq \text{ess sup } D^2u_0 \leq (1 - \delta)I_n \quad \text{(1.3)}\]

for any $\delta \in (0, 1)$. Then (1.1) has a longtime smooth solution $u(x, t)$ for all $t > 0$ with initial condition u_0 such that the following estimates hold:

1. $-(1 - \delta)I_n \leq D^2u \leq (1 - \delta)I_n$ for all $t > 0$.
2. $\sup_{x \in \mathbb{R}^n} |D^l u(x, t)|^2 \leq C_{l, \delta}/t^{l-2}$ for all $l \geq 3$, and some $C_{l, \delta}$ depending only on l, δ.
3. u and Du are Hölder continuous in time at $t = 0$ with Hölder exponents 1 and $1/2$ respectively.

If in addition $|Du_0(x)| \to 0$ as $|x| \to \infty$, then $\sup_{x \in \mathbb{R}^n} |Du(x, t)| \to 0$ as $t \to \infty$. In particular, the graph $(x, Du(x, t))$ immediately becomes smooth and converges smoothly on compact sets to the coordinate plane $(x, 0)$ in \mathbb{R}^{2n}.

$\Leftrightarrow U$ strictly convex after changing coordinate.
Theorem 1.2 Suppose that \(u_0 : \mathbb{R}^n \to \mathbb{R} \) is a function with \(L^\infty \) Hessian satisfying (1.3) and suppose that

\[
\lim_{\lambda \to \infty} \lambda^{-2} u_0(\lambda x) = U_0(x)
\] \hspace{1cm} (1.4)

for some \(U_0(x) \). Let \(u(x, t) \) be the solution to (1.1) with initial data \(u_0(x) \). Then \(\lambda^{-2} u(\lambda x, \lambda^2 t) \) converges to a smooth self-expanding solution \(U(x, t) \) to (1.1) uniformly on compact subsets of \(\mathbb{R}^n \times (0, \infty) \) as \(\lambda \to \infty \), and \(U(x, t) \) converges to \(U_0(x) \) uniformly on compact subsets of \(\mathbb{R}^n \) as \(t \to 0 \). In particular, there is a one-to-one correspondence between self-expanding solutions to (1.1) satisfying (1.3) and Lipschitz functions on \(\mathbb{R}^n \) which are homogeneous of degree 2 and satisfy (1.3).

Chau - Chen - Yuan, 2013

Theorem 1.1 There exists a small positive dimensional constant \(\eta = \eta(n) \) such that if \(u_0 : \mathbb{R}^n \to \mathbb{R} \) is a \(C^{1,1} \) function satisfying

\[-(1 + \eta) I_n \leq D^2 u_0 \leq (1 + \eta) I_n \] \hspace{1cm} (2)

then (1) has a unique longtime smooth solution \(u(x, t) \) for all \(t > 0 \) with initial condition \(u_0 \) such that the following estimates hold:

(i) \(-\sqrt{3} I_n \leq D^2 u \leq \sqrt{3} I_n \) for all \(t > 0 \).

(ii) \(\sup_{x \in \mathbb{R}^n} |D^l u(x, t)|^2 \leq C_l/t^{l-2} \) for all \(l \geq 3 \), \(t > 0 \) and some \(C_l \) depending only on \(l \).

(iii) \(Du(x, t) \) is uniformly Hölder continuous in time at \(t = 0 \) with Hölder exponent \(1/2 \).
Monotonicity Formula (Huisken, 1990)

- Back heat kernel at \((x_0, t_0)\)

\[
\rho_{x_0, t_0}(x, t) = \frac{1}{\sqrt{4\pi(t_0 - t)}} e^{-\frac{|x-x_0|^2}{4(t_0-t)}}, \quad t < t_0.
\]

- If \(\Sigma_t\) satisfies MCF, then

\[
\frac{d}{dt} \int_{\Sigma_t} \rho_{x_0, t_0} \, d\mu_t = - \int_{\Sigma_t} \rho_{x_0, t_0} |H + \frac{\nabla_x(x - x_0)^\perp}{2(t_0-t)}|^2 \, d\mu_t \leq 0,
\]

\[\Rightarrow \lim_{t \to t_0} \int_{\Sigma_t} \rho_{x_0, t_0} \, d\mu_t \text{ exists, called the density at } (x_0, t_0).
\]

- Have a similar formula for MCF in a Riemannian manifold and the density is also defined (White, 1997).
\[\int_{\Sigma_t} \rho_{x_0,t_0} d\mu_t \text{ is invariant under dilation. That is,} \]
\[\int_{\Sigma_t} \rho_{x_0,t_0} d\mu_t = \int_{\Sigma_{s,0}^\lambda} \rho_{0,0} d\mu_s^\lambda. \]

Choose \(\lambda_i \to \infty \). If the limit of the flow of \(\Sigma_{s,0}^{\lambda_i} \) exists, it must satisfy
\[H(x, s) - \frac{1}{2s} X^\perp_t = 0, \quad s < 0. \]

For MCF in a Riemannian manifold, the blow up limit still lies in \(\mathbb{R}^m \).

\(\Sigma \) is called a (normalized) self-shrinker in \(\mathbb{R}^m \) if its position vector \(X : \Sigma \to \mathbb{R}^m \) satisfies \(H = -\frac{1}{2} X^\perp \). \(\Rightarrow \sqrt{1-tX} \) satisfies MCF.
Soliton Solution to MCF in \mathbb{R}^m

Solutions looks the same under MCF, either of the form $\varphi(t)X(x)$ or $X(x) + \psi(t)$ Direct computation shows that

- In case (1), $H = cX^\perp$ and $\varphi(t) = \sqrt{1 + 2ct}$ for a constant c. $c < 0$, solutions shrink, self-shrinkers, models for central blowup limits. $c = 0$, solutions do not move, minimal submanifolds. $c > 0$, solutions expand, called self-expanders, possible limit at infinity.

- In case (2), $H = T^\perp$ for a constant vector T and $\psi(t) = tT$, called a translating solution. It is possible limit for max point blowup.

- Find such examples. Try to classify. Determine whether these examples are blowup limits of MCF. Use these examples to understand the singularities, and do surgery.
If $L(x,t)$ satisfies MCF_x, then $\Sigma(x,s) = \sigma \left(\Sigma(x, t_0 + \frac{s}{\sigma^2}) - t_0 \right)$ also satisfies MCF_x. If Σ defined in $[0,T)$

\[\left(\frac{\partial \Sigma}{\partial s}\right)^{-1} = \left(\sigma \frac{\partial \Sigma}{\partial t} - \frac{1}{\sigma^2}\right)^{-1} \]

= \frac{1}{\sigma} \tilde{H}(\Sigma(x,t)) = \tilde{H}(\tilde{\Sigma}(x,s))

1. Type I blow up (central pt blow up)

assume Σ has an isolated singularity at (y_0,T)

$\sigma \rightarrow \infty$. $\tilde{\Sigma_i}(x,s) = \sigma_i \left(\Sigma(x, t + \frac{s}{\sigma_i^2}) - t_0 \right)$

\exists a subseq. $-\sigma_i^2 T \leq s < 0 \rightarrow \text{ancient sol}$

$\exists \tilde{\Sigma_i}$ have Brakke flow limit $\tilde{\Sigma}^{2\infty}$
Different subseq may have different limits

2. Type II blow up (max pt blow up)

\[\tilde{\Sigma}(x, S) = \delta_i \left(\sum (x, t_i + \frac{S}{\delta_i^2} - y_i) \right), \quad \delta_i \to \infty \]

\[y_i = \sum (x_i, t_i), \quad t_i \to T_i \quad \& \quad y_i \to y_0 \]

\[-t_i \delta_i^2 \leq s \leq (T - t_i) \delta_i^2 \]

\[s (T - t_i) \delta_i^2 \to 0 \quad \to \text{eternal sol} \]

\[\exists \text{ a subseq } \Rightarrow \tilde{\Sigma}^i \text{ has a Brakke flow limit } \tilde{\Sigma}^\infty \]

usually take \(\delta_i \sim \max \|A(x, t_i)\| = A(x_i, t_i) \)
A singularity is called type I singularity if

$$\max_{\Sigma_t} |A|^2 \leq \frac{C}{T-t}$$

- $MC^H \text{ in } KE$. Lag condition is preserved for cpt smooth sole Smoczyk 1996

follow from

$$\frac{d}{dt}|\omega|^2 \leq \Delta|\omega|^2 + c|\omega|^2$$

Wang, Chen-Li. Never

No type I singularity for LMCH if graded Lag

- Cpt. + almost Calibrated
- Entire graph

- also for MC^H of symplectic sphere in KE, $\omega > 0$
Main reason: all smooth graded Lag shrinkers must be planar from more general form of Huisken's monotonicity formula.

Theorem
Let f_t be a smooth family of functions on 2_t. Then assuming all quantities are finite:

$$\frac{d}{dt}\int_{\Sigma_t} f_t \Phi(x_0, T) d\mathcal{H}^n = \int_{\Sigma_t} (\frac{df_t}{dt} - \Delta f_t) \Phi(x_0, T) d\mathcal{H}^n$$

$$- \int_{\Sigma_t} f_t \mathcal{H}^1 \left(\frac{1}{2(T-t)} \right)^{\frac{1}{2}} \Phi(x_0, T) d\mathcal{H}^n$$

$$\int_{\Sigma_t} \Phi(x_0, T)(x, t) = \frac{\exp \left(-\frac{|x-x_0|^2}{4(T-t)}\right)}{(4\pi(T-t))^{n/2}}.$$

\[\Theta_t(x_0, l) = \int_{M_t} \Phi(x_0, l)(x, 0) d\mathcal{H}^k.\]

Theorem 3.1 (White’s Regularity Theorem). There are $\varepsilon_0 = \varepsilon_0(n, k)$, $C = C(n, k)$ so that if $\partial M_t \cap B_{2R} = \emptyset$ and M_t satisfies $\text{MC} \mathcal{H}$,

$$\Theta_t(x, l) \leq 1 + \varepsilon_0 \quad \text{for all} \quad l \leq R^2, x \in B_{2R}, \text{and} \ t \leq R^2,$$

then the $C^{2, \alpha}$-norm of M_t in B_R is bounded by C/\sqrt{t} for all $t \leq R^2$.

Being graded Lag, we have an extra function Q preserved under LMC_t:

$$\frac{d}{dt} Q_t = \Delta Q_t \Rightarrow \frac{d}{dt} \Theta_t^2 = \Delta \Theta_t^2 - 2|H|^2$$

1. smooth graded Lag shrunken. $H = -\frac{1}{2} X^\perp$ (assuming Q bded)

$L_t = \sqrt{-t} L$ satisfies LMC_t &

$$H_t = \frac{1}{\sqrt{-t}} H = -\frac{1}{2} \frac{1}{\sqrt{-t}} X^\perp = -\frac{1}{2} \frac{1}{\sqrt{-t}} \frac{1}{\sqrt{-t}} X_t^\perp = -\frac{1}{2} \frac{X_t^\perp}{-t}.$$

Define $Q(t) = \int_{L_t} \Theta^2 \Phi(0,0) dA^n$ scaling invariant

$$\Rightarrow 0 = \frac{d}{dt} Q = \int_{L_t} (\frac{d}{dt} - \Delta) \Theta^2 \Phi(0,0) dA^n - \int_{L_t} \Theta^2 |H| - \frac{X_t^\perp}{2t} \int_{L_t} ^2 \Phi(0,0) dA^n$$

$$= -2 \int_{L_t} |H|^2 \Phi(0,0) dA^n \Rightarrow H_t = 0 \text{ minimal cone}$$

I smooth : plane